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Abstract. A new formulation of the Bogoliubov-Valatin transformation explicitly parameter-dependent
and with no quasiparticle operators is derived and applied to a diagonalization of the BCS reduced Hamil-
tonian in the particle space. It is shown that the eigenstates of this Hamiltonian are just the BCS states
and are a kind of squeezed fermion-pair states as well.

PACS. 03.65.-w Quantum mechanics – 42.50.-p Quantum optics

1 Introduction

In some traditional theories of superconductivity the
Bogoliubov-Valatin transformation (BVT) [1–3] is applied
to diagonalize the BCS reduced Hamiltonian [4,5] in the
so-called quasiparticle space, and the energy spectrum
and the ground state of the system are obtained in this
space. The essential effects associated with superconduc-
tivity of the quantum fermion liquid are then explained in
the language of quasiparticles or elementary excitations.
In contrast with the idea of quasiparticles, the character-
istic features of the BCS states, which consist of corre-
lated pairs with an attractive interaction between elec-
trons with opposite momenta and antiparallel spins, seem
to be neglected all along. Some time ago Svozil [6] intro-
duced the squeezed fermion states in close anology with
the two-photon coherent states [7,8] by virtue of the BVT
approach. According to Svozil, the BCS model is thought
a good example to generate the intramode squeezing of
electro-hole sectors. However, the details of the problem
remain vague.

In this paper instead of the formal introduction of
squeezed fermion states and the conjecture that the BCS
states might be these sort of states, we first construct
a new formulation of the BVT explicitly parameter-
dependent and with no quasiparticle operators. Using
these fomulas we then can diagonalize the BCS reduced
Hamiltonian in the particle space rather than the quasi-
particle space. One important feature of the new method
lies in that the unitary operator performed the transfor-
mation and the eigenstates of the Hamiltonian diagonal-
ized can immediately be determinted. In particular, they
naturally present a similar appearance to those of the two-
mode squeeze operator [9] and squeezed number states [7,
10] of light if the parameter is properly chosen. We will
show that these eigenstates are precisely the usual BCS
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states, and can reasonably be called the squeezed fermion-
pair states. Finally, the result of our theory will be com-
pared with the known experimental ones of superconduc-
tivity.

2 New fomulation of the BVT

The general BVT which mixes the annihilation operators
ap↑(a−p↓) and the creation operators a+

p↑(a
+
−p↓) of a pair

of fermions with opposite momenta (p,−p) and antipar-
allel spins (↑, ↓) may be written in the form of the unitary
transformations for the individual fermion operators

Upap↑U
+
p = µpap↑ − νpa

+
−p↓,

Upa
+
p↑U

+
p = µ∗pa

+
p↑ − ν

∗
pa−p↓,

Upa−p↓U
+
p = µpa−p↓ + νpa

+
p↑,

Upa
+
−p↓U

+
p = µ∗pa

+
−p↓ + ν∗pap↑ (1)

where Up is an unitary operator, µp and νp are complex
transformation coefficients. The unitarity of the transfor-
mation requires that

|µp|
2 + |νp|

2 = 1. (2)

Now we assume that all Up, µp, and νp are the functions
of a certain real parameter x. Differentiating equation (1)
with respect to x and using the relation Up(∂U

+
p /∂x) =

−(∂Up/∂x)U+
p , we obtain

[
∂Up

∂x
U+
p , Upap↑U

+
p ] =

∂µp

∂x
ap↑ −

∂νp

∂x
a+
−p↓,

[
∂Up

∂x
U+
p , Upa

+
p↑U

+
p ] =

∂µ∗p
∂x

a+
p↑ −

∂ν∗p
∂x

a−p↓,

[
∂Up

∂x
U+
p , Upa−p↓U

+
p ] =

∂µp

∂x
a−p↓ +

∂νp

∂x
a+

p↑,

[
∂Up

∂x
U+
p , Upa

+
−p↓U

+
p ] =

∂µ∗p
∂x

a+
−p↓ +

∂ν∗p
∂x

ap↑ (3)



2 The European Physical Journal D

where the sign [ , ] denotes a commutator. Substituting
equation (1) into (3) and multiplying each expression by
µp(µ

∗
p) and νp(ν

∗
p) separately, it follows that

[
∂Up

∂x
U+
p , ap↑] = κpap↑ − ζ

∗
pa

+
−p↓,

[
∂Up

∂x
U+
p , a

+
p↑] = κ∗pa

+
p↑ − ζpa−p↓,

[
∂Up

∂x
U+
p , a−p↓] = κpa−p↓ + ζ∗pa

+
p↑,

[
∂Up

∂x
U+
p , a

+
−p↓] = κ∗pa

+
−p↓ + ζpap↑ (4)

where

ζp(x) = µp
∂ν∗p

∂x
− ν∗p

∂µp(x)

∂x
,

κp(x) = µ∗p
∂µp

∂x
+ νp

∂ν∗p(x)

∂x
= −κ∗p(x). (5)

Multiplying again each of equation (4) by the opera-
tors ap↑(a

+
p↑) and a−p↓(a

+
−p↓) separately and rearranging

properly, we obtain

∂Up

∂x
U+
p −

1

2

(
a+

p↑

∂Up

∂x
U+
p ap↑ + a+

−p↓

∂Up

∂x
U+
p a−p↓

+ap↑
∂Up

∂x
U+
p a

+
p↑ + a−p↓

∂Up

∂x
U+
p a

+
−p↓

)
= ζ∗pa

+
p↑a

+
−p↓ − ζpa−p↓ap↑ − κp(a

+
p↑ap↑ + a+

−p↓a−p↓ − 1).

(6)

Supposing that the operator (∂Up/∂x)U+
p is in proportion

to the right hand side of equation (6),

∂Up

∂x
U+
p = k[ζ∗p (x)a+

p↑a
+
−p↓ − ζp(x)a−p↓ap↑

− κp(x)(a+
p↑ap↑ + a+

−p↓a−p↓ − 1)] (7)

where k is a proportion constant to be determined. The
substitution of equation (7) back into (6) and the straight-
forward calculation give that k = 1, which then leads to

Up(x) = exp[ξ∗p(x)K+ − ξp(x)K− + i2ηp(x)K0] (8)

where

K+ = a+
p↑a

+
−p↓, K− = a−p↓ap↑,

K0 =
1

2
(a+

p↑ap↑ + a+
−p↓a−p↓ − 1) (9)

are the generators of the SU(2) Lie algebra, which satisfy
the commutation relation

[K−,K+] = −2K0, [K0,K±] = ±K0 (10)

and

ξp(x) =

x∫
x0

ζp(x
′)dx′, ηp(x) = i

x∫
x0

κp(x
′)dx′ (11)

where ξp(x0) = ηp(x0) = 0 and Up(x0) = 1, or equiva-
lently, µp(x0) = 1 and νp(x0) = 0. Moreover, the unitarity
of Up requires that ξp(x) has to be a complex function of
x and ηp(x) a real function of x. These requirements will
impose strong restrictions on a choice of x and x0.

On the other hand, if we perform the transformation
(1) directly by using the unitary operator (8), we will have

µp(x) = cosΩp(x)−
iηp(x)

Ωp(x)
sinΩp(x),

νp(x) =
ξ∗p(x)

Ωp(x)
sinΩp(x) (12)

where Ωp(x) = [|ξp(x)|2 + η2
p(x)]1/2. It is evident that

equations (5), (11) and (12) form a set of coupled inte-
grodifferential equations with respect to ξp(x) and ηp(x)
or µp(x) and νp(x). These equations must be solved self-
consistently. It is easy to see that their self-consistent so-
lutions can readily be found in practical applications if
the parameter is ingeniously assigned. This means that
equations (1), (5), (8), (11) and (12) would form a set of
parameter-dependent, closed expressions of the BVT.

3 Diagonalization of the BCS reduced
Hamiltonian

Employing the grand canonical ensemble and a mean field
approximation of the interaction, as is usually done in the
quasiparticle theory, the BCS reduced Hamiltonian can be
written as

H ′ =
∑
p>0

{εpa
+
p↑ap↑ + εpa

+
−p↓a−p↓

+∆∗pa−p↓ap↑ +∆pa
+
p↑a

+
−p↓ −∆

∗
pXp} (13)

where εp = p2/2m − µ is the energy measured from the
Fermi surface and ∆p =

∑
p′
Vpp′Xp′ is the so-called energy

gap function. Here µ is the chemical potential, Vpp′ =
< p ↑,−p ↓|V |p′ ↑,−p′ ↓ > represents the matrix ele-
ment of the attractive interaction between fermion pairs
with opposite momenta and spins, and Xp =< a−p↓ap↑ >
is the ensemble average of the operators within the angle
brackets.

Let us further perform the unitary transformation for
H ′ and require that the transformed Hamiltonian is to be
diagonal in the fermion number operators, that is

UH ′U+ = E0 +
∑
p 6=0

Epa
+
p↑ap↑ (14)

where U =
∏
p

Up is the total unitary operator, E0 and Ep

are the energy of the ground state and the energy spec-
trum of the system respectively. The direct calculation
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gives:
−2εpµpν

∗
p + (∆∗pµ

2
p −∆pν

∗2
p ) = 0, (15)

εp[|µp|
2 − |νp|

2 +∆∗pµpνp +∆pµ
∗
pν
∗
p ] = Ep, (16)∑

p6=0

[εp|νp|
2 − (∆∗pµpνp +∆pµ

∗
pν
∗
p)−∆pXp] = E0. (17)

First, the combination of equations (15) and (2) give the
solutions of µ and ν to be

µp =

(
λp + 1

2λp

)1/2

, νp =

(
λp − 1

2λp

)1/2

(18)

where

λp = (1 + α2
p)

1/2, αp =
∆p

εp
· (19)

It should be noted that we have assumed ∆p is a real
quantity by a suitable choice of phases, so λp, µp and νp
are all the real functions of αp. Since αp is associated with
the attractive potential V via ∆p, and Vpp′ , µp|αp=0 = 1
and νp|αp=0 = 0 physically correspond to the case of the
ideal fermion system when the interaction is equal to zero.
Therefore it is appropriate to choose αp as the parameter
x and take αp = 0 to be the lower limit of the integrals in
equation (11). Thus

ξp(αp) =
1

2
αp 2F1(

1

2
, 1;

3

2
;−α2

p), ηp(αp) = 0. (20)

where 2F1 is the Gaussian hypergeometric function and
αp < 1 [11]. From this result equations (8) and (12) then
become

Up(αp) = exp{ξp(r)[a
+
p↑a

+
−p↓ − a−p↓ap↑]}. (21)

µp = cos ξp(αp), νp(αp) = sin ξp(αp). (22)

Next, substituting equation (22) back into equations (16)
and (17), we obtain

Ep = (ε2
p +∆2

p)
1/2, (23)

E0 = −
∑
p6=0

(Ep −∆p −∆pXp). (24)

Not at all suprising, equations (23) and (24) appear in
the same forms as those of the BCS theory, but here Xp

and ∆p have to be evaluated in the particle space rather
than in the quasiparticle space. It is easily shown that
the thermodynamics deduced from them is also quite the
same as those of the quasiparticle theory [5]. However,
the eigenstates of the Hamiltonian (13) now are obviously
determined as

|Φ{np,n−p}(αp) > = U+(αp)|{np, n−p} >

=
∏
p

U+
p (αp)|np, n−p > (25)

where |{np, n−p} >= |np1 , n−p1 > |np2 , n−p2
> ... is a

multimode fermion-pair state, which is the direct prod-
uct of various single fermion-pair states or double fermion

states |np, n−p > in the double Fock space. The ground
states and the complete excitation states of the system
correspond to the cases of the occupation numbers np =
n−p = 0 and 1 respectively,

|Φ{0p,0−p}(αp) > =
∏
p

U+
p (αp)|0p, 0−p >

=
∏
p

[cos ξp − sin ξpa
+
p↑a

+
−p↓]|0p, 0−p >,

(26)

|Φ{p↑,−p↓}(αp) > =
∏
p

U+
p (αp)|1p, 1−p >

=
∏
p

[cos ξp + sin ξpa−p↓ap↑]|1p, 1−p > .

(27)

Following the usual method, the fermion-pair state is con-
structed as

|np, n−p >=
(a+
−p↓)

n−p(a+
p↑)

np√
np!
√
n−p!

|0p, 0−p > . (28)

Hence a−p↓ap↑|1p, 1−p >= −|0p, 0−p > and
a+

p↑a
+
−p↓|0p, 0−p >= −|1p, 1−p >. Then equations (26)

and (27) are precisely the standard BCS states [3,5]. In
view of striking resemblances between the unitary oper-
ator (21) and the Caves-Schumaker two-mode squeeze
operator of light, we would therefore expect that Up(αp)
should play the role of the squeeze fermion operator for
the pair of the (p ↑)- and (−p ↓)-mode in the quantum
Fermi liquid, while the eigenstates (25) should be the
fermion analog of the two-mode squeezed number states
of light.

4 Quantum correlation and squeezing
of the BCS ground state

We are now in a position to justify our views above. With-
out loss of generality we restrict ourselves to the BCS
ground state. The density matrix representing this pure
state is of the form

ρ = U+|{0p, 0−p} >< {0p, 0−p}|U. (29)

The reduced density matrix for the (p ↑)-mode is obtained
by tracing ρ over the (−p ↓)-mode, and is

ρp↑ = Tr−p↓ρ

=
∏
p

{cos2 ξp(αp)|0p >< 0p|+ sin2 ξp(αp)|1p >< 1p|}.

(30)

If we set that tan ξp = e−βωp/2 , thus cos2 ξp = 1/(1 +

e−βωp) and sin2 ξp = e−βωp/(1 + e−βωp), equation (30)
then becomes

ρp↑ =
∏
p

e−βωpa
+
p ap

1 + e−βωp
· (31)
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Similarly, the reduced density matrix for the (−p ↓)-mode
has

ρ−p↓ =
∏
p

e−βωpa
+
−pa−p

1 + e−βωp
(32)

where ωp = ω−p. These states are of the forms usually
associated with chaotic or thermal Fermi-Dirac statistics.
Thus both the single modes display thermal fluctuation.
On the other hand, we see that the density matrix (29)
cannot be written in the factorized form

ρ = ρp↑

⊗
ρ−p↓. (33)

Then the BCS ground state is certainly correlated [12,13],
unless ξp = 0, that is, the squeeze parameter αp = 0 or
the energy gap ∆p = 0 for the case of the ideal fermion
system.

In order to see the squeezing property of the BCS
ground state, instead of the linear superposition of the
two single modes, we immediately adopt the BCS annihi-
lation and creation operators corresponding to the pairing
destruction and creation of electrons [4,5],

bp = a−p↓ap↑, b+p = a+
p↑a

+
−p↓. (34)

Then the Hermitian quadrature components of the anni-
hilation operator are introduced by

b1p =
1

2
(bp + b+p ), b2p =

1

2i
(bp − b

+
p ). (35)

Whereas the BCS ground state now is rewritten as

|Φ{0p,0−p}(αp) =
∏
p

[θp|0p, 0−p > +τp|1p, 1−p >] (36)

where θp and τp are the probability amplitudes for
fermion-pair vaccum and excitation in the double Fock
space, they usually have to be complex numbers and
|θp|2 +|τp|2 = 1. For b1p and b2p we find that the variances
in this state are

∆b21p =
1

4
(1− sin2 2ξp(αp) cos25φ),

∆b22p =
1

4
(1− sin2 2ξp(αp) sin25φ) (37)

where 5φ is the relative phase between θp and τp. Ob-
viously, squeezing can simultaneously occur in both the
qudratures for various 5φ. This would arise from the fact
that the two modes, the (p ↑)- and (−p ↓)-mode, become
so tightly correlated because of the attractive interaction,
that the quadratures of their complicated superposition
modes might no longer fluctuate independently.

Similar cases have occured in two-photon nonlinear
processes in quantum optics [9,13,14]. For example,
for non-degenerate processes the individual signal and
idler modes display isotropic, phase-insensitive Gaussian
fluctuations analogous to those usually associated with

chaotic or thermal Bose-Einstein fields. However, the com-
bined two-mode state, due to the quantum correlation be-
tween the signal and idler modes, is a non-classical state of
light exhibiting squeezed fluctuations. Moreover, if the ini-
tial state is a double vacuum state squeezing would also
simultaneously exist in the two time-dependent quadra-
tures for all times t > 0.

Since the squeeze parameter αp physically cannot take
any value, for example, in the weak-coupling limit the cou-
pling constant N(0)V � 1 (here N(0) is the state density
at the Fermi surface), for which [15]

∆(0) = 2~ωDe−1/(N(0)V ). (38)

where ∆(0) is the energy gap at the temperature T = 0
and ~ωD ' |εp| is the energy determined by the Debye
frequency ωD. Thus

αp '
∆(0)

~ωD
= 2e−1/(N(0)V ). (39)

The experimental values of N(0)V for some metals are
0.18 ∼ 0.39, the corresponding values of αp then are
0.0074 ∼ 0.164. For such small values of αp squeezings are
rather small. However, as already noted in reference [16],
BCS theory is exact in both the weak- and strong-coupling
limits. The larger values of N(0)V , i.e. αp, should be also
possible.
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